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Famous Topics of Linear Algebra in ML
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q How can we represent data (images, text, user preferences, etc.) in a 
way that computers can understand?
o Organize information into a vector!

q A vector is a 1-dimensional array of numbers. 
o It has both a magnitude (length) and a direction

q The totality of a vectors with n entries is an n-dimensional vector space.

Data Representations (Linear Algebra)
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q A feature vector is a vector whose entries represent the 
“features” of an object.

q The vector space containing them is called feature space.

Data Representations (Machine Learning)
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Data Representation 
Applications
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q In black and white images, black and white pixels 

correspond to 0s and 1s.

q In grayscale pixels are numbers between 0 and 255.

Image
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q Given a collection of documents (e.g. Wikipedia articles), assign 
to every word a vector whose 𝑖!" entry is the number of times 
the word appears in the 𝑖!" document.

q These vectors can be assemble into a large matrix, useful for 
latent semantic analytics.

Words and Documents
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q In the sub-field of machine learning for working with text data called natural 
language processing (NLP), it is common to represent documents as large 
matrices of word occurrences.

q Matrix factorization methods, such as the singular-value decomposition can be 
applied to this sparse matrix. Documents processed in this way are much easier 
to compare, query, and use as the basis for a supervised machine learning 
model.

Latent Semantic Analysis
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q Given users and items (e.g. movies), vectors can indicate if a user has 
interacted with the item (yes=1, no=0).

q User’s rating a number between 0 and 5.

Yes/No or Ratings
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q Sometimes you work with categorical data in machine learning.

q It is common to encode categorical variables to make them 
easier to work with and learn by some techniques. A popular 
encoding for categorical variables is the one hot encoding.

q A one hot encoding is:

Categorical (Non-numerical) Data 
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q One-Hot Encodings (standard basis vector)
o Assign to each word a vector with one 1 and 0s elsewhere.

o Suppose our language only has four words:

Categorical (Non-numerical) Data 
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Drawbacks v Very sparse vectors.
v Are never similar!
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q Dot Product
o The product of numbers is another number.

o The dot product of vectors is not another vector! It is a number!!

How to measure the similarity?
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q Dot product between a vector and itself: magnitude-squared, the 
length squared, or the squared-norm, of the vector.

Length of vector
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q Represents the length of the “shadow” of one vector along another.

q This indicates how similar the two vectors are.

Dot Product (Geometric Interpretation and Intuition)
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One-Hot Encodings Drawbacks
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Famous Topics of Linear Algebra in ML
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q An embedding of a vector is another vector in a smaller dimensional 
space.

Vector Embeddings (Linear Algebra)
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Vector Embeddings (Machine Learning)
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q A matrix is a 2-dimensional array of numbers.

q Matrix is a linear transformation
o It represents a particular process of turning one vector into another: 

stretching, rotating, scaling or something more complex.

What is Matrix?
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q Image Rotation

What is Matrix?

Image Rotation Image Scaling
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q A matrix represents a transformation of an entire vector space to 
another (possibly of different dimensions)

What is Matrix?
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q We can multiply numbers and get number.

q We can multiply vectors by dot product and get number.

q We can multiply matrices and get a matrix.

q Factorization?

Matrix Factorization
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In general factorization is HARD!



q Fundamental Theorem in Linear Algebra:
o Every matrices can be factored!

Matrix Factorization (Linear Algebra)
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Theorem

Singular Value Decomposition (SVD)
Every 𝑛×𝑚 matrix can be written as a product of three smaller matrices as below:



Matrix Factorization (Linear Algebra)
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q It has wide use in linear algebra and can be used directly in 
applications such as feature selection, visualization, noise 
reduction, and more.

q The columns/rows of the factors are candidates for embeddings.



Vector Embedding 
Applications

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 25



q User – Movie Matrix 
o Checkmarks = watched movie

o Empty cells = not watched movie

Recommender Systems
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q We dont know the features!
o Example: 2-dimensional “latent” 

feature space!

q We want to find the new, smaller

dimensional vector representations that

capture these features.

Recommender Systems
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Recommender Systems
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Recommender Systems
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Recommender Systems
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q These two vectors are close!

q The shadow of orange vector

onto blue vector is pretty large!

Recommender Systems
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Neural Network
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Feed data vector into a 
Neural network. The output
is vector embedding.

Under the hood:

Matrix multiplication plus more.
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Famous Topics of Linear Algebra in ML
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q “Compress” high-dimensional data into a smaller-dimensional, 
more meaningful subspace.

q This should be done in a way that doesn’t lose too much 
information.

Goal
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Data Representations (Linear Algebra)
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q Matrix is a transformation between vector spaces

q There are some transformations for which some vectors never 
change direction, but are only scaled.

Data Representations (Linear Algebra)
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These special vectors are called eigenvectors
The scaling factor is called an eigenvalue.
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q Principal Component Analysis
o Often, a dataset has many columns, perhaps tens, hundreds, thousands, or 

more.

o Methods for automatically reducing the number of columns of a dataset are 
called dimensionality reduction, and perhaps the most popular method is 
called the principal component analysis, or PCA for short

o The core of the PCA method is a matrix factorization method from linear 
algebra. 

Data Representations (Machine Learning)
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)
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Conclusion
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q A friendly introduction to linear algebra for ML (ML Tech Talks) 
by TensorFlow

q Introduction to Applied Linear Algebra Vectors, Matrices, and 
Least Squares

q Linear Algebra and its applications

q Linear algebra A Modern Introduction David Poole
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